
GeneralDescription

The ZLM0309BA uses advanced trench technology to provide excellent $R_{DS(ON)}$, and ultra-low low gate charge with a 25V gate rating. This device is suitable for use as a load switch or in PWM applications.

◆ RoHS and Halogen-Free Compliant

Product Summary

 $\begin{array}{lll} V_{DS} & -30V \\ I_{D}(at \ V_{GS} \!\!=\!\! -10V) & -10A \\ R \ _{DS(ON)}(\ at \ V_{GS} \!\!=\!\! -10V) & <18m\Omega \\ R \ _{DS(ON)}(\ at \ V_{GS} \!\!=\!\! -4.5V) & <36m\Omega \end{array}$

Absolute MaximumRatings (T _A =25°Cunle	lute MaximumRatings (T _A =25℃unless otherwisenoted)						
Parameter		Symbol	Maximum	Units			
Drain-Source Voltage		V _{DS}	-30	V			
Gate-Source Voltage		V_{GS}	±20	V			
ContinuousDrain Current	T _A =25℃		-10	Α			
ContinuousDrain Current	T _A =70℃	ID	-8	A			
PulsedDrainCurrent ^C	A A	I _{DM}	-80	Α			
Power Dissipation ^B	T _A =25℃	P_{D}	3.1	W			
Power Dissipation	T _A =70℃	C	2	VV			
Storage Temperature Range		T _{STG}	-55 to +150	$^{\circ}$			
Operating Junction Temperature Range		T_J	-55 to +150	${\mathfrak C}$			
Thermal Resistance, Junction-to-Ambient A	(I)	$R_{\theta JA}$	40	€/W			

www.zlw-ic.net

Electrical Characteristics (TJ=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS		1			
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =-250uA, V _{GS} =0V	-30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-30V,V _{GS} =0V			-1	uA
I _{GSS}	Gate-Bodyleakagecurrent	V _{DS} =0V,V _{GS} =±25V			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} ,I _D =-250uA	-1.7		-3	V
I _{D(ON)}	Onstate draincurrent	V _{GS} =-10V,V _{DS} =-5V	-80			Α
R _{DS(ON)}	R _{DS(ON)} StaticDrain-Source On-Resistance	V _{GS} =-10V,I _D =-8A		15	18	mΩ
VDS(ON)	StaticDrain-Source On-Resistance	V _{GS} =-4.5V,I _D =-5A		27	36	mΩ
g _{FS}	ForwardTransconductance	V _{DS} =-5V,I _D =-10A		22		S
V _{SD}	Diode Forward Voltage	I _{DS} =-1A,V _{GS} =0V		-0.75	-1	V
Is	Maximum Body-Diode ContinuousCurre	nt			-3.5	Α
DYNAMI	PARAMETERS					
C _{iss}	InputCapacitance	\/ -0\/\/ - 45\/		1120		pF
C _{oss}	OutputCapacitance	V _{GS} =0V,V _{DS} =-15V, f=1MHz		235		pF
C _{rss}	Reverse TransferCapacitance	I- IIVII IZ		112		pF
SWITCHI	NG PARAMETERS	•				
Q _g	TotalGate Charge	V _{GS} =-10V,V _{DS} =-15V,		18		nC
Q _{gs}	Gate Source Charge	I _D =-10A		5.5		nC
Q_{gd}	Gate Drain Charge			3.5		nC
t _{D(on)}	Turn-OnDelayTime	V _{GS} =-10V,V _{DS} =-15V,		9		ns
t _r	Turn-On Rise Time	$R_L=1.5\Omega, R_{GEN}=3\Omega$	J.	8.5		ns
$t_{D(off)}$	Turn-OffDelayTime			17		ns
t _f	Turn-OffFallTime			7		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-10A,dI/dt=100A/μs		25		ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-10A,dI/dt=100A/μs		12		nC

Notes:

A. is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference isdefined as the solder mounting surface of the drain pins. R θ JC is guaranteed by design while R $_{\theta$ CA is determined by theuser's board design. R $_{\theta$ JA shown below for single device operation on FR-4 in still air.

- B.The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using \leq 10s junction-to-ambient thermal resistance.
- C.Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C. Ratings are based on low frequency and duty cycles to keep initialTJ=25°C.
- D.The static characteristics in Figures 1 to 6 are obtained using <300 us pulses, duty cycle 0.5% max.
- E.These curves are based on the junction-to-ambient thermal impedance which is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{J(MAX)}$ =150°C. The SOA curve provides a single pulse rating.

www.zlw-ic.net 2/6

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

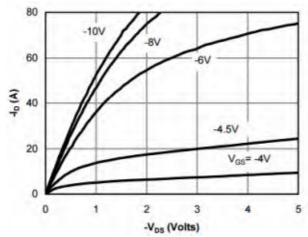


Fig 1: On-Region Characteristics (Note D)

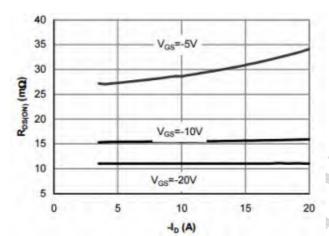


Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note D)

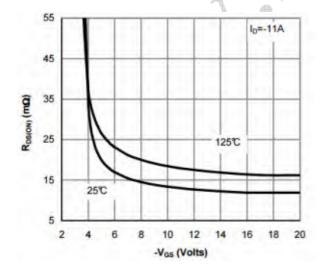


Figure 5: On-Resistance vs. Gate-Source Voltage (Note D)

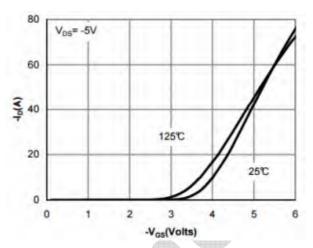


Figure 2: Transfer Characteristics (Note D)

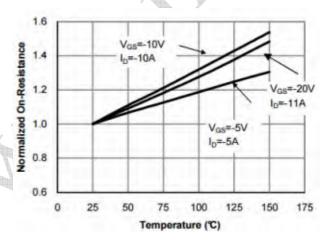


Figure 4: On-Resistance vs. Junction Temperature (Note D)

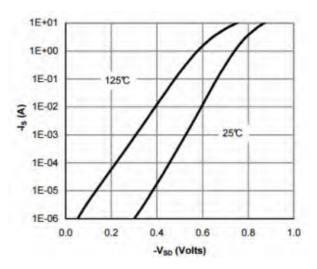
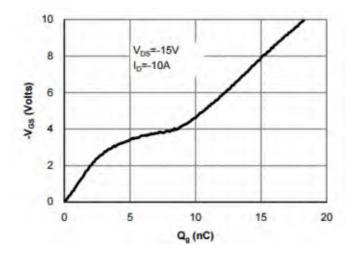



Figure 6: Body-Diode Characteristics (Note D)

www.zlw-ic.net 3/6

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

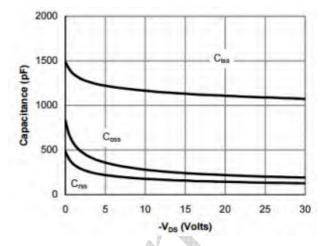
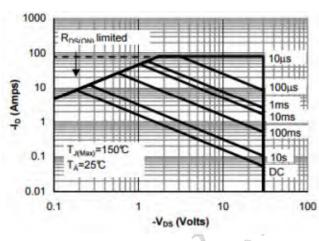



Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

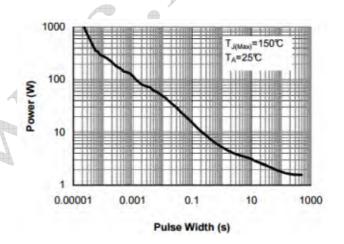
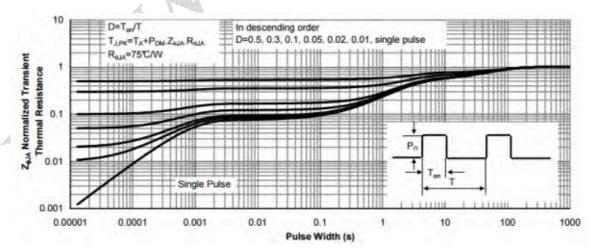
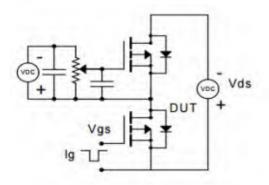
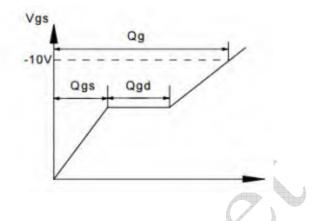


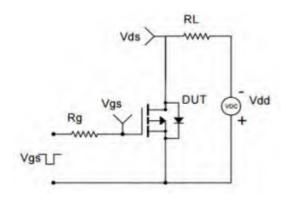
Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

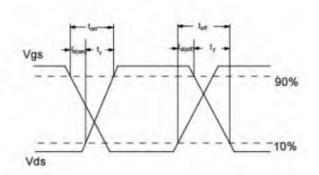
Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

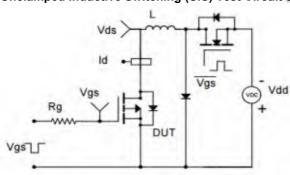



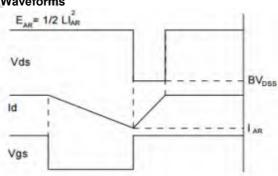

Figure 11: Normalized Maximum Transient Thermal Impedance (Note E)

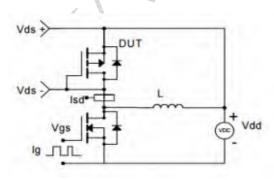
www.zlw-ic.net 4/6

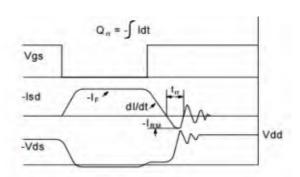



Gate Charge Test Circuit & Waveform

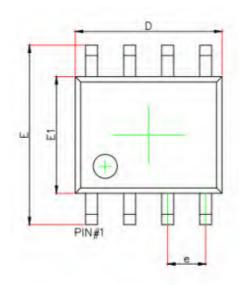


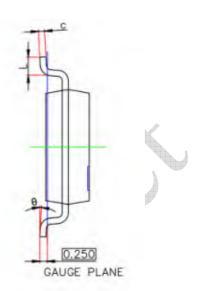

Resistive Switching Test Circuit & Waveforms

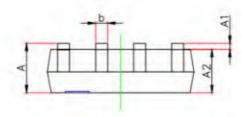



Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms




www.zlw-ic.net 5/6



Package Information

SOP-8

Cumbal	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.007	0.010	
D	4.800	5.000	0.189	0.197	
е	1.270 (BSC)		0.050 (BSC)		
E	5.800	6.200	0.228	0.244	
E1	3.800	4.000	0.150	0.157	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

www.zlw-ic.net 6/6